Create and release your Profile on Zintellect – Postdoctoral applicants must create an account and complete a profile in the on-line application system. Please note: your resume/CV may not exceed 2 pages.
Complete your application – Enter the rest of the information required for the IC Postdoc Program Research Opportunity. The application itself contains detailed instructions for each one of these components: availability, citizenship, transcripts, dissertation abstract, publication and presentation plan, and information about your Research Advisor co-applicant.
Additional information about the IC Postdoctoral Research Fellowship Program is available on the program website located at: https://orise.orau.gov/icpostdoc/index.html.
If you have questions, send an email to ICPostdoc@orau.org. Please include the reference code for this opportunity in your email.
Research Topic Description, including Problem Statement:
Data, and the insights analysts obtain from it, are crucial for Intelligence Community (IC) agencies to perform their mission. The volume and variety of data is increasing, and they are interconnected so that insights is obtained from the combination of data from many sources. Data classification is traditionally based on the content of the data, although context and metadata may also have an impact on its sensitivity. Typically, classification of the data is based on the potential impact on the national interest, organizations or individuals if the data is compromised. Classifications range from no business impact for unclassified data to catastrophic impact for top secret data. In some cases appropriate classification of data is straightforward since either the nature of the data or the way in which it was collected clearly indicate its level of sensitivity. Increasingly, organizations in the IC are drawing on a variety of data derived from unclassified or low classification sources. In this case, the level of sensitivity of the derived data is not clear, particularly when it is comprised of a range of data-types including structured, unstructured and multimedia data.
The classification level of data has substantial implications on its ability to be shared and analyzed or combined with data from other sources, which can limit its usefulness and the ability of IC agencies to collaborate with other agencies, industry or academia. At present, the risk-based guidelines do not provide clear guidelines as to the sensitivity of derived collections of disparate data. Hence the goal of this project is to use mathematical and statistical principles to establish a framework for classifying disparate collections of security relevant data based on its importance, value or sensitivity, taking into consideration the need to maximize the availability and hence usefulness of the data.
In addition, any artificial intelligence (AI) or machine learning (ML) model developed needs to be trained against a representative data set. Often, combining two disparate data sets to train a model will greatly affect its sensitivity and therefore its classification. And in some cases data sets cannot be combined between agencies due to legislative or policy restrictions. A related area of research for this proposal is the ability to train a model based on siloed or disparate data sets in a manner that preserves privacy or other security restrictions but still enables the model developed to be trained against an appropriate representative and complete data set.
Example Approaches:
Relevance to the Intelligence Community:
This is an escalating problem for IC agencies as there is an increasing need to collaborate across agencies, and with industry and academia. Higher classification of data restricts availability, usefulness and value. Moreover, the classification of data has an impact on its use for internet of things applications, edge technologies and AI. Having a well-defined set of objective principles for classifying disparate collections of security-relevant data would assist in balancing the risks associated with sharing data against the benefits of sharing the data.
Key Words: Information Classification, Information Security, Data Classification Standards, Machine Learning, Artificial Intelligence, Prediction, Analytics, Graph Networks
You gave a rating of 0 star(s)
SECURITY/PRIVACY NOTICE
By continuing to use this system you indicate your awareness of and consent to the following terms and conditions of use. LOGOUT IMMEDIATELY if you do not agree to the conditions stated in this warning.
SECURITY NOTICE
This system is part of a Federal information system. This system is monitored for security purposes to ensure it remains available to all users and to protect information in the system. The system employs software programs to monitor network traffic to identify unauthorized activities. By accessing this system, you are expressly consenting to these monitoring activities. Unauthorized attempts to defeat or circumvent security features; to use the system for other than intended purposes; to deny service to authorized users; to access, obtain, alter, damage, or destroy information; to upload or change information; to otherwise cause system or information damage; or otherwise to interfere with the system or its operation, is prohibited. Evidence of such acts may be dis-closed to law enforcement authorities and result in prosecution under the Computer Fraud and Abuse Act of 1986 and the National Information Infrastructure Protection Act of 1996, or other applicable laws.
PRIVACY NOTICE
This system is for authorized use only. Use of this system constitutes consent to security monitoring and testing. All activity is logged with your host name and IP address. Users (authorized or unauthorized) have no explicit or implicit expectation of privacy. Any or all uses of this system and all files on this system may be intercepted, monitored, recorded, copied, audited, inspected, and dis-closed to authorized site and law enforcement personnel, as well as authorized officials of other agencies, both domestic and foreign. By using this system, the user consents to such interception, monitoring, recording, copying, auditing, inspection, and disclosure at the discretion of authorized site or law enforcement personnel. Unauthorized or improper use of this system may result in administrative disciplinary action and civil and criminal penalties.
You have been inactive on this page for . You will be logged out after 03:00:00.
Select an icon below to visit the website and download an appropriate browser.
For help, please email Zintellect@orau.org.
Question: What is the deadline for submitting an application?
Answer: Not all opportunities have application deadlines. Some opportunities remain open until they are filled. If an opportunity has an application deadline, then it will be listed in the opportunity details or in the opportunity catalog.
Question: How do I reset my password?
Answer: If you have forgotten your password or wish to reset your password, use the "Forgot password or username?" tab on the login to reset it.
Question: I forgot my username. How do I retrieve it?
Answer: Use the "Forgot password or username?" tab on the login. You will receive an email containing your username.
Question: What do I need to submit an application?
Answer: Typically, applicants are required to submit a resume or CV, an official copy of their transcripts or academic record, and a minimum of two references at the time they apply. Additional requirements such as a writing sample, thesis or dissertation, etc. may be required. Review the opportunity details for additional information about the requirements for applying for an opportunity.
Question: Where do I upload my transcripts?
Answer: If required, you will be asked to upload your transcript as a part of the application process.
Question: Where do I submit a writing sample?
Answer: If required, you will be asked to upload a writing sample as part of the application process.
Question: Can a family member serve as a reference?
Answer: No; family members may not serve as references. References must be able to speak to your educational and/or professional experience. At least one academic reference is preferred.
Our Zintellect A.I. is constantly learning how to Match you to our opportunities! So, we want to know when we get it right or when we get it wrong. This will help us make our better! Plus, as a potential applicant to one of our many opportunities across the country, we value you and want to help you on your career path!