Create and release your Profile on Zintellect – Postdoctoral applicants must create an account and complete a profile in the on-line application system. Please note: your resume/CV may not exceed 2 pages.
Complete your application – Enter the rest of the information required for the IC Postdoc Program Research Opportunity. The application itself contains detailed instructions for each one of these components: availability, citizenship, transcripts, dissertation abstract, publication and presentation plan, and information about your Research Advisor co-applicant.
Additional information about the IC Postdoctoral Research Fellowship Program is available on the program website located at: https://orise.orau.gov/icpostdoc/index.html.
If you have questions, send an email to ICPostdoc@orau.org. Please include the reference code for this opportunity in your email.
Research Topic Description, including Problem Statement:
Quantum sensors (e.g. atomic magnetometers, NV centers in diamond, atom interferometers, atomic clocks, Rydberg atom electric field sensors) and novel optical sensors (e.g. optical frequency combs, fiber sensors) can show great sensitivity in the laboratory and in some cases have been demonstrated outside of a laboratory environment. However, barriers to more widespread use include the complexity of operating many of these sensors and the instability of the sensors in a relatively uncontrolled environment. For example, some quantum magnetometers require the ambient magnetic field and any field gradients to be carefully tuned, and some sensors with thermal sensitivities require some feed-forward process to correct for temperature fluctuations. The process of nulling ambient fields or measuring thermal response characteristics can be time-consuming and frustrating, because often the sensor systems have complex and nonlinear behaviors that cannot be modeled well. Fortunately, algorithms used in machine learning are often highly suitable for problems such as these. While machine learning is more typically used to analyze data that has already been acquired, this topic is about using these algorithms to improve the performance of the sensor itself. A working quantum or novel optical sensor should be used to quantitatively improve a sensor when using machine learning algorithms as part of the sensor system, where improvement is along performance parameters such as accuracy, speed, robustness to noise and environmental fluctuations, or along system parameters such as size or complexity.
Example Approaches:
To date only a few published examples of machine learning algorithms applied to quantum systems or traditional sensors exist. Some examples include using artificial neural networks along with co-sensor data to increase the accuracy of the thermal calibration of a sensor, using a sequential Monte Carlo algorithm to optimize the Ramsey pulses driving an NV center in diamond in the presence of environmental noise, using Bayesian optimization to find efficient procedures for generating a Bose-Einstein condensate (BEC), and using a conditional variable auto-encoder to decrease the measurement time of a current map of a quantum dot device. Because this is a relatively new approach to improving sensor performance, this topic is not at all limited to the sensors and algorithms described in this topic or in the literature. However, this topic does not include using machine learning algorithms to process data already acquired by a sensor, or to devise new algorithms without testing them on a real sensor, or modeling sensor performance without demonstrating the algorithms on a real sensor.
Relevance to the Intelligence Community:
The Intelligence Community (IC) is always looking for better techniques to perform technical collection. Small, high-performance sensors would allow operation in previously impossible scenarios and with new functionality. They are also more realistically multiplexed which further increases sensitivity and often adds new capabilities such as directionality. Applying machine learning to these sensors can make them much more accurate and robust, making them even more applicable to IC problems.
Key Words: Machine Learning, Artificial Neural Networks, Atomic Sensor, Quantum Sensor, Optical Sensor, Atomic Magnetometer, Atom Interferometer, Atomic Clock, NV Center, Rydberg Atom, Optical Frequency Comb, Optical Fiber Sensors, Noise Suppression, Sensor Calibration
You gave a rating of 0 star(s)
SECURITY/PRIVACY NOTICE
By continuing to use this system you indicate your awareness of and consent to the following terms and conditions of use. LOGOUT IMMEDIATELY if you do not agree to the conditions stated in this warning.
SECURITY NOTICE
This system is part of a Federal information system. This system is monitored for security purposes to ensure it remains available to all users and to protect information in the system. The system employs software programs to monitor network traffic to identify unauthorized activities. By accessing this system, you are expressly consenting to these monitoring activities. Unauthorized attempts to defeat or circumvent security features; to use the system for other than intended purposes; to deny service to authorized users; to access, obtain, alter, damage, or destroy information; to upload or change information; to otherwise cause system or information damage; or otherwise to interfere with the system or its operation, is prohibited. Evidence of such acts may be dis-closed to law enforcement authorities and result in prosecution under the Computer Fraud and Abuse Act of 1986 and the National Information Infrastructure Protection Act of 1996, or other applicable laws.
PRIVACY NOTICE
This system is for authorized use only. Use of this system constitutes consent to security monitoring and testing. All activity is logged with your host name and IP address. Users (authorized or unauthorized) have no explicit or implicit expectation of privacy. Any or all uses of this system and all files on this system may be intercepted, monitored, recorded, copied, audited, inspected, and dis-closed to authorized site and law enforcement personnel, as well as authorized officials of other agencies, both domestic and foreign. By using this system, the user consents to such interception, monitoring, recording, copying, auditing, inspection, and disclosure at the discretion of authorized site or law enforcement personnel. Unauthorized or improper use of this system may result in administrative disciplinary action and civil and criminal penalties.
You have been inactive on this page for . You will be logged out after 03:00:00.
Select an icon below to visit the website and download an appropriate browser.
For help, please email Zintellect@orau.org.
Question: What is the deadline for submitting an application?
Answer: Not all opportunities have application deadlines. Some opportunities remain open until they are filled. If an opportunity has an application deadline, then it will be listed in the opportunity details or in the opportunity catalog.
Question: How do I reset my password?
Answer: If you have forgotten your password or wish to reset your password, use the "Forgot password or username?" tab on the login to reset it.
Question: I forgot my username. How do I retrieve it?
Answer: Use the "Forgot password or username?" tab on the login. You will receive an email containing your username.
Question: What do I need to submit an application?
Answer: Typically, applicants are required to submit a resume or CV, an official copy of their transcripts or academic record, and a minimum of two references at the time they apply. Additional requirements such as a writing sample, thesis or dissertation, etc. may be required. Review the opportunity details for additional information about the requirements for applying for an opportunity.
Question: Where do I upload my transcripts?
Answer: If required, you will be asked to upload your transcript as a part of the application process.
Question: Where do I submit a writing sample?
Answer: If required, you will be asked to upload a writing sample as part of the application process.
Question: Can a family member serve as a reference?
Answer: No; family members may not serve as references. References must be able to speak to your educational and/or professional experience. At least one academic reference is preferred.
Our Zintellect A.I. is constantly learning how to Match you to our opportunities! So, we want to know when we get it right or when we get it wrong. This will help us make our better! Plus, as a potential applicant to one of our many opportunities across the country, we value you and want to help you on your career path!